How to build LLVM from source, monorepo version

This is an update of my previous post “How to build LLVM from source” (2018-04-16), which is now out-of-date. LLVM has moved to a “monorepo” design instead of a collection of smaller tool-specific repositories. So this new post has fewer steps!

UPDATE, 2020-03-22: Patch D69221 seems to have made the procedure much simpler, eliminating the need for Jens Jorgensen’s patch, at least on OSX 10.14.6. Therefore I have shortened this post considerably. You can find the old version in the blog’s git history or on the Wayback Machine.


The LLVM codebase’s official home is https://github.com/llvm/llvm-project.

(However, to submit patches to LLVM projects, you must use the official Phabricator; don’t submit GitHub pull requests against llvm/llvm-project! At least not as of November 2019.)

Step 1: Fork!

Go to your GitHub account and fork the following repository:

Step 2: Get the code!

Locally clone the repo to the right place.

cd $ROOT
git clone git@github.com:llvm/llvm-project

This is a good time to set up the .git/config for the repo you just cloned (for example, $ROOT/llvm-project/.git/config). I set it up this way:

[remote "origin"]
    url = git@github.com:Quuxplusone/llvm-project.git
    fetch = +refs/heads/*:refs/remotes/origin/*
[remote "upstream"]
    url = git@github.com:llvm/llvm-project.git
    fetch = +refs/heads/*:refs/remotes/upstream/*
[branch "master"]
    remote = upstream
    merge = refs/heads/master

This gives me two remotes: one named upstream whence I can pull, and one named origin whither I can push. My local master and origin/master will both track upstream/master. Anything I do in my local repo, I will do in a feature branch; my feature branches will track origin.

Step 3: Build!

mkdir $ROOT/llvm-project/build
cd $ROOT/llvm-project/build
cmake -G Ninja \
    -DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" \
    -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi" \
    -DCMAKE_BUILD_TYPE=Release ../llvm
ninja clang
ninja cxx

Making clang will build both clang and clang++.

If you omit -DCMAKE_BUILD_TYPE=Release (or at least -DCMAKE_BUILD_TYPE=RelWithDebInfo), this first part will still work, but you’ll produce a “debug-build” version of clang that is super slow, and then the “bootstrap” step below will take days instead of minutes. So watch out for that.

On my laptop, cmake takes about 42 seconds; ninja clang takes about 96 minutes.

Troubleshooting step 3

If something goes wrong, you can usually recover via

rm $ROOT/llvm-project/build/CMakeCache.txt

and, absolute worst case, you can rm -rf $ROOT/llvm-project/build and start over.


If you succeed in building clang, but then when you run it you get errors about the standard C-language headers, like this,

$ bin/clang++ test.cc
test.cc:1:10: fatal error: 'stdio.h' file not found
#include <stdio.h>
         ^~~~~~~~~
1 error generated.

then you may have set DEFAULT_SYSROOT inappropriately. On 10.14.6, when I run xcrun --show-sdk-path, I get /Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk. Your results may vary.

If you get errors about the C++ headers, such as <vector>, it’s because you still need to build libc++: run ninja cxx.

Step 4: Bootstrap check-clang and libc++.

Here we will instruct CMake to build Clang again, using the Clang we just built. There is apparently an official way to bootstrap Clang (probably out-of-date). However, I use an approach inspired by the CMake FAQ. Note that we will not be installing Clang over top of the system compiler; that would be super dangerous and you should never do it!

mkdir $ROOT/llvm-project/build2
cd $ROOT/llvm-project/build2
CXX="$ROOT/llvm-project/build/bin/clang++" \
cmake -G Ninja \
    -DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" \
    -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi" \
    -DCMAKE_BUILD_TYPE=RelWithDebInfo ../llvm
ninja clang cxx
ninja check-clang check-cxx

Now you have built two versions of clang++: $ROOT/llvm-project/build/bin/clang++ is the version built with your system compiler, and $ROOT/llvm-project/build2/bin/clang++ is the version built with that version. You can extend this to build3, build4, etc.

Making cxx will build libc++.dylib, libc++.a, and libc++abi.dylib. Making cxxabi will build libc++abi.a. Making check-cxx will build libc++experimental.a. (Unfortunately, compiler-rt will not build on OSX.)

This time, cmake takes about 58 seconds; ninja clang takes about 153 minutes. ninja check-clang takes another 53 minutes: 36 minutes to build a bunch of additional tools, and then 17 minutes to run the actual tests. ninja cxx takes about 84 seconds. ninja check-cxx takes about 50 minutes (but see the caveat below about cxx_under_test).

Step 5: Run specific tests.

Running a specific test or directory-of-tests for any product is easy:

cd $ROOT/llvm-project/build2
./bin/llvm-lit -sv ../llvm/test/Analysis
./bin/llvm-lit -sv ../clang/test/ARCMT
./bin/llvm-lit -sv ../libcxx/test/std/re

However, before you can successfully run one of these lines, you must have run the corresponding one of make check-{llvm,clang,cxx} at least once, to initialize the right stuff under the build2 directory.

(Thanks to Brian Cain for documenting this recipe.)

But watch out — both make check-cxx and llvm-lit will by default use your system compiler to run the libc++ tests! This is not what you want! Tell llvm-lit to use your newly built Clang by passing the cxx_under_test parameter, like this:

./bin/llvm-lit -sv --param cxx_under_test=`pwd`/bin/clang ../libcxx/test/

On my laptop, this command line again takes about 50 minutes to run all the libc++ tests, but this time it correctly uses the bootstrapped compiler.

Posted 2019-11-09